Preliminary

TOSHIBA PHOTOCOUPLER GaAIAs LED & PHOTO-IC

TLP116

Digital Isolation for A/D,D/A Conversion.

High Speed Line Receiver.

Microprocessor System Interfaces.

Plasma Display Panel.

The Toshiba TLP116 consists of a GaAlAs light emitting diode and a integrated high gain, high speed photo detector.

Inverter Logic (totempole output)

Package Type : MFSOP6

■ Guaranteed Performance Over Temperature : -40~100°C

Power Supply Voltage: 4.5~5.5V

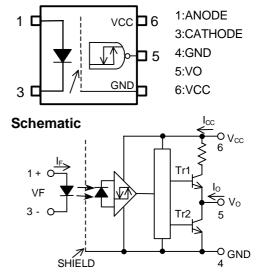
• Input Thresholds Current : IFHL=5mA(Max.)

Propagation delay Time (tpHL/tpLH): 60ns(Max.)

Switching speed: 20MBd(TYP.) (NRZ)

Common mode transient immunity : 10kV/us

• Isolation Voltage: 3750Vrms


Unit in mm 6 5 4 7.0±0.4 11-4C2 Unit in mm 7.0±0.4 11-4C2

Weight: 0.09 g

Truth Table

Input	LED	Tr1	Tr2	Output
Н	ON	OFF	ON	L
L	OFF	ON	OFF	Η

Pin Configuration (Top View)

0.1uF bypass capacitor must be connected between pin 6 and 4

TLP116

Recommended Operating Conditions

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input Current , ON	IF(ON)	8		18	mA
Input Voltage , OFF	VF(OFF)	0		0.8	V
Supply Voltage	VCC	4.5	5.0	5.5	V
Operating Temperature	Topr	-40		100	°C

The correlation between input current and switching speed and drive circuit (reference information).

Input Current (IF)	TEST CIRCUIT	Typical Switching Speed
12mA	1 (Page 4)	21 – 23 MBd
8mA	1 (Page 4)	18 – 20 MBd
8mA	2 (Page 4,With Speed up capacitor)	23 – 27 MBd

Maximum Ratings (Ta=25°C)

	CHARACTERISTIC	SYMBOL	RATING	UNIT
	Forward Current	IF	20	mA
ED	Forward Current Derating (Ta=85°C)	?IF/?Ta	-0.5	mA/°C
۳	Peak Transient Forward Current (Note1)	IFPT		Α
	Reverse Voltage	VR	5	V
В	Output Current	Ю	10	mA
DETECTOR	Output Voltage	VO	6	V
ETE(Supply Voltage	VCC	6	V
	Output power dissipation	РО	40	mW
Oper	ating Temperature Range	Topr	-40~100	°C
Stora	ge Temperature Range	Tstg	-55~125	°C
Lead	Solder Temperature(10s)	Tsol	260	°C
	tion Voltage AC,1min.,R.H.=60%,Ta=25(C) (Note2)	BVs	3750	Vrms

Note1: Pulse width PW=10us,500pps.

Note2 : Device Considered a two terminal device : pins 1 and 3 shorted together and pins 4,5 and 6 shorted together.

Electrical Characteristics

(Unless otherwise specified, Ta=-40 to 100°C, VCC=4.5~5.5V)

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Input Forward Voltage	VF	IF=10mA ,Ta=25°C	_	1.3	1.5	V
Temperature Coefficient of Forward Voltage	?VF/?Ta	IF=10mA			_	mV/°C
Input Reverse Current	IR	VR=5V,Ta=25°C		_	10	μΑ
Input Capacitance	СТ	V=0,f=1MHz,Ta=25°C			_	pF
Logic Low Output Voltage	VOL	IOL=1.6mA, IF=12mA,VCC=5V		_	0.4	V
Logic High Output Voltage	VOH	IOH=-0.02mA , VF=1.05V,VCC=5V	4.0	_	_	V
Logic Low Supply Current	ICCL	IF=12mA	_	_	5.0	mA
Logic High Supply Current	ICCH	VF=0V (Note 3)	_	_	5.0	mA
Input Current Logic Low Output	IFHL	IO=1.6mA,VO<0.4V		_	5	mA
Input Voltage Logic High Output	VFLH	IO=-0.02mA,VO>4.0V	0.8	_	_	V

^{*}All typical values are at Ta=25°C,VCC=5V,IF=(ON)=12mA unless otherwise specified

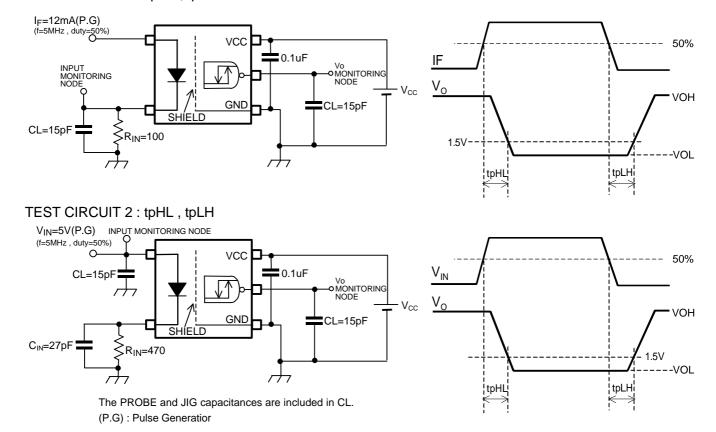
Note3: The Photodetector needs VCC of 4.5V or more for the stability operation.

In the VCC range less than 4.5V,ICCH may increase in some part of VCC range. It is recommended to check operation of power supply stability in timing at power supply ON, and OFF before product is used.

Isolation Characteristics (Ta = 25°C)

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Capacitance input to output	Cs	V = 0,f = 1MHz (Note 2)	?	0.8	?	pF
Isolation resistance	R _S	R.H. = 60% , $V_S = 500V$ (Note 2)	1×10 ¹²	10 ¹⁴	?	0
		AC,1 minute	3750	?	?	V _{rms}
Isolation voltage	BV_S	AC,1 second,in oil	?	10000	?	Vdc
		DC,1 minute,in oil	?	10000	?	vuc

Switching Characteristics


(Unless otherwise specified, Ta=-40 to 100°C, VCC=4.5~5.5V)

	l	TEST	10 100 0,100 = 410 0.01 /					
CHARACTERISTIC	SYMBOL	CIR- CUIT	CONI	CONDITION		TYP.	MAX.	UNIT
propagation Delay Time to Logic High output	tpHL	1	IF=0 12mA	R _{IN} =100 CL=15pF	_	-	60	ns
propagation Delay Time to Logic Low output	tpLH	1	IF=12 0mA	(Note 4)	_	_	60	ns
propagation Delay Time to Logic High output	tpHL		V _{IN} =0 5V (IF=0 8mA)	R _{IN} =470 C _{IN=} 27pF	_	_	60	ns
propagation Delay Time to Logic Low output	tpLH	2	V _{IN} =5 0V (IF=8 0mA)	CL=15pF (Note 4)	_	_	60	ns
Switching Time Dispersion between ON and OFF	tpHL- tpLH		IF=12mA , R _{IN} = CL=15pF (Note	•	_	_	30	ns
Output Fall Time(90-10%)	tf	1	IF=0 12mA	R _{IN} =100 CL=15pF (Note 4)	_		_	ns
Output Rise Time(10-90%)	tr		IF=12 0mA		_		_	ns
Common Mode transient Immunity at High Level Output	СМН		VCM=1000Vp-p Vo(Min)=4V,Ta=		10000		_	V/us
Common Mode transient Immunity at Low Level Output	CML		VCM=1000Vp-p,IF=12mA, Vo(Max)=0.4V,Ta=25°C		-10000	_	_	V/us

^{*}All typical values are at Ta=25°C

Note 4: CL is approximately 15pF which includes probe and Jig/stray wiring capacitance.

TEST CIRCUIT 1: tpHL, tpLH

4

RESTRICTIONS ON PRODUCT USE

030619EBC

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in
 general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility
 of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire
 system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life,
 bodily injury or damage to property.
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.
- GaAs(Gallium Arsenide) is used in this product. The dust or vapor is harmful to the human body. Do not break, cut, crush or dissolve chemically.